Copper homeostasis.

نویسندگان

  • Jason L Burkhead
  • Kathryn A Gogolin Reynolds
  • Salah E Abdel-Ghany
  • Christopher M Cohu
  • Marinus Pilon
چکیده

Copper (Cu) is a cofactor in proteins that are involved in electron transfer reactions and is an essential micronutrient for plants. Copper delivery is accomplished by the concerted action of a set of evolutionarily conserved transporters and metallochaperones. As a result of regulation of transporters in the root and the rarity of natural soils with high Cu levels, very few plants in nature will experience Cu in toxic excess in their tissues. However, low Cu bioavailability can limit plant productivity and plants have an interesting response to impending Cu deficiency, which is regulated by an evolutionarily conserved master switch. When Cu supply is insufficient, systems to increase uptake are activated and the available Cu is utilized with economy. A number of Cu-regulated small RNA molecules, the Cu-microRNAs, are used to downregulate Cu proteins that are seemingly not essential. On low Cu, the Cu-microRNAs are upregulated by the master Cu-responsive transcription factor SPL7, which also activates expression of genes involved in Cu assimilation. This regulation allows the most important proteins, which are required for photo-autotrophic growth, to remain active over a wide range of Cu concentrations and this should broaden the range where plants can thrive.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

How Bacteria Handle Copper

Copper in biological systems presents a formidable problem: it is essential for life, yet highly reactive and a potential source of cell damage. Tight control of copper is thus a cellular necessity. To meet this challenge, cells have evolved pumps for transmembranous transport, chaperones for intracellular routing, oxidases and reductases to change the oxidation state of copper, and regulators ...

متن کامل

Molecular mechanisms of copper homeostasis in yeast

Copper ions play critical roles as electron transfer intermediates in various redox reactions. The yeast Saccharomyces cerevisiae has served as a valuable model to study copper metabolism in eukaryotic cells. The systems for copper homeostasis; including the uptake, cytoplasmic trafficking, and metabolism in intracellular organelles, detoxification, and regulation of these systems have been cha...

متن کامل

Role of the P-Type ATPases, ATP7A and ATP7B in brain copper homeostasis

Over the past two decades there have been significant advances in our understanding of copper homeostasis and the pathological consequences of copper dysregulation. Cumulative evidence is revealing a complex regulatory network of proteins and pathways that maintain copper homeostasis. The recognition of copper dysregulation as a key pathological feature in prominent neurodegenerative disorders ...

متن کامل

Modulation of copper deiciency responses by diurnal and circadian rhythms in Arabidopsis thaliana

Copper homeostasis under deiciency is regulated by the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE7 (SPL7) transcription factor. The daily oscillating expression of two SPL7-dependent copper deiciency markers, COPPER TRANSPORTER (COPT2) and IRON SUPEROXIDE DISMUTASE (FSD1), has been followed by quantitative PCR and in promoter:LUCIFERASE transgenic plants. Both genes showed circadian and diurnal reg...

متن کامل

Cellular response of antioxidant metalloproteins in Cu/Zn SOD transgenic mice exposed to hyperoxia.

Ceruloplasmin, metallothionein, and ferritin are metal-binding proteins with potential antioxidant activity. Despite evidence that they are upregulated in pulmonary tissue after oxidative stress, little is known regarding their influence on trace metal homeostasis. In this study, we have used copper- and zinc-containing superoxide dismutase (Cu/Zn SOD) transgenic-overexpressing and gene knockou...

متن کامل

Copper homeostasis in Drosophila by complex interplay of import, storage and behavioral avoidance.

Copper is an essential but potentially toxic trace element. In Drosophila, the metal-responsive transcription factor (MTF-1) plays a dual role in copper homeostasis: at limiting copper concentrations, it induces the Ctr1B copper importer gene, whereas at high copper concentrations, it mainly induces the metallothionein genes. Here we find that, despite the downregulation of the Ctr1B gene at hi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The New phytologist

دوره 182 4  شماره 

صفحات  -

تاریخ انتشار 2009